
Habitat User Manual

For Version 2.0 Alpha

System Garden T +44 (0) 20 7100 6627 welcome@systemgarden.com www.systemgarden.com/habitat

http://www.systemgarden.com/habitat
http://www.systemgarden.com/habitat

Table of Contents

Introduction 1
How to Start 2

Data Sources 3
The Local Host 3
Adding Hosts 3
Adding Files 3
Adding a Repository 4
Removing Files and Hosts 5

Displaying Data 6
Selecting Rings 6
Choosing Views 6
Using Charts 7
Loading Historic Data 7
Zooming and Panning Data 8

Customisation and Preferences 9
Customising the GUI 9
Preferences 9

The Collection Agent: Clockwork 11
Starting and Stopping Clockwork 11
Data Collection 12
Performance Gathering Probes 13
Data Gathering Methods 14
Job Execution 14
Data Storage 14

System Garden Habitat Version 2 Alpha

Habitat User Manual i

Command Line Utilities 16
Introduction 16
Common Arguments 16

Data Addressing 17
habget 17
habput 18
Manual and Automatic Starting 18
Other commands 19

Data Formats 20

Upload, Download and Replication with System Garden 21

Manual Pages 22
myhabitat 22
clockwork 27
statclock 31
killclock 32
habget 33
habput 34
habrs 36
habmeth 39
habprobe 41
habconf 43
habrep 45
habedit 46

System Garden Habitat Version 2 Alpha

Habitat User Manual ii

Introduction

Habitat is an extensible collector, monitor and viewer for system and application time series data. It
connects to System Garden for social IT management and acts as a data gateway to upload and view
streams of time series data from your organisation.

Historic data is central to the workings of habitat, with all collected information being sent to the local
light weight data store and thence to the optional System Garden archive for long term storage.

A large number of measurements are taken from the system by default, including disk storage,
processor utilisation and network usage. All the metrics can be examined over arbitrary time to gain a
full perspective of the work the machine has done. By reducing the samples of data over time (a
process called cascading), habitat is also able to give long term trends from only local data whilst
keeping modest storage requirements.

The graphical application provided by Habitat is called MyHabitat and once data has been collected
for a little while, you would expect to see a display like the one below.

MyHabitat showing the local machine source, two files and a remote host; the data drawn is from the local machine

System Garden

Habitat User Manual 1

MyHabitat has a split view with data sources on the left and the selected data on the right, similar to
an ‘explorer’ type interface.

Each source is typically a server, service or grouping of servers and services: the local host is at the
top of the choice list. When selected, a default data view is shown to the right, with buttons along the
top to change the data seen and how it is visualised. The buttons below help navigate and alter the
appearance of the tool.

The slider at the bottom shows how much data has been loaded and can be displayed; move it to the
left to load and display more data. Zooming into the chart does not affect this control.

How to Start
Just run the command myhabitat inside the bin directory or launch from the Application menu, which
will start the graphical tool containing a splash screen and invite you to start the collection agent.

Click on Start Collection and after a while data will load in a graph format

In the current release, the default data collection rate is every 60 seconds (which can be customised)
and will store this information to disk. Therefore, you will need to wait for two to three minutes for
meaningful data to appear.

To start the collection daemon only with out starting the graphical application, just run clockwork from
the bin directory. See the manual page clockwork(8), the Collection Agent section later in this manual
and lastly the Habitat Administration Manual for more information about the collection agent.

System Garden

Habitat User Manual 2

Data Sources

The Local Host
The local host will be shown initially, if data is being collected, with CPU usage information over one
day being the default default view.

The Local Host view talks to the collection agent on its own host to obtain its data and the option will
appear under HABITAT / This Host: hostname in the choice tree.

By convention and default, the collector uses a single file var/yourhost.grs (where yourhost is the
name of your computer) to store its data. Inside this file are sets of data, known as ‘rings’ within
Habitat, such as processor, storage, networking, processes and uptime. This is selected by choosing
one of the data set buttons on the right hand pane. See Selecting Data later on.

As new data is saved, Habitat is able to show a long term history of activity on its monitored hosts,
not just since the monitor was last started. As new data is collected by the agent, it will be appended
to the store and the display in MyHabitat will replot.

Adding Hosts
To connect to other hosts and get their data, select File->Host
from the menu, type the name of the machine and click 'Attach
to another Habitat' as its source. If successful, an entry for that
machine will appear in the choice tree, under the HOSTS group.

The normal method to access local and remote data is to query
the agents directly on each monitored machine. The collection
agent (clockwork) implements a network server to satisfy these
queries. When called, the primary file for that host is used to
return the results.

As with local host as a source, the remote host will contain multiple data sets (rings) which are
selected using the ring selection buttons from the right hand pane. It will also poll the remote host
periodically and update the display when new data is available.

Adding Files
Add files to MyHabitat by selecting File->Open... from the menu bar and selecting the data you wish
to open. Several formats are supported and MyHabitat attempts to detect the format using the file

System Garden

Habitat User Manual 3

extension and the contents. If the auto detection does not work, you can select the file type in the file
choose dialogue.

Habitat generates data files that can be used later, for example when captured from a benchmark
session. A GRS files is one such format and supports a secondary data set (ring) level internally.
Conventional CSV files are also supported and can be displayed as a table or chart. If the file can’t be
read in a table structure, then it will be treated as a text file and displayed without formatting.

The supported formats are as follows, and are discussed in greater detail later in the document:

GRS
FHA
CSV
TSV
PSV
SSV

Habitat ringstore format, GDBM flavour
Fat Headed Array (discussed later)
Comma Separated Values
Tab Separated Values
Pipe (|) Separated Values
Space Separated Values

In a standard configuration, the Habitat collection agent (clockwork) stores data in a ringstore
structure (see GRS above), which is held in a single file. The file is called hostname.grs and is held in
var in the application directory (for the .tar distributions) or /var/lib/habitat (for the RPM distributions).

Both previously recorded and live .GRS files can be opened and viewed.

Individual users may also collect customised data for their own use, which will not be stored in the
main system ringstore file. Typically, they will use this data in addition to the central information by
mounting both files within a visualisation tool such as myhabitat.

The main system file is also used to provide peer data access and data replication (see below).

Adding a Repository
Using the standard configuration, the system ringstore file will grow to around 5 MBytes; more if
additional data is collected or retention periods are extended. Older data is averaged down to a lower
frequency than the original collected to save space.

To keep more data and to share with the rest of your organisation, a remote repository may be used
to archive data and can be used as a bulk set of data sources within myhabitat. Such a repository is
provided by System Garden, which provides social IT management (http://systemgarden.com to sign
up).

Once your account has been configured into myhabitat, the repository will appear in the choice tree
under the REPOSITORY group. This allows the user to browse to data sources using group
relationship information supplied to System Garden. For example, a British finance server may appear
under the path REPOSITORY->Finance->London->hostname.

System Garden

Habitat User Manual 4

If you don’t know the group ownership of a host, it can be
sourced directly from FIle->Host option in the menu. Type the
host name in the pop-up window and keep the repository
source button highlighted. The host will appear under the
HOSTS group in the choice tree.

Removing Files and Hosts
Remove a file or host from MyHabitat by clicking on File->Close... from the menu bar and selecting
from popup window.

This will remove the data source from the choice tree.

Alternatively, click with the right mouse button over the source you wish to remove and choose Close.
You can not remove the local host choice or the repository.

System Garden

Habitat User Manual 5

Displaying Data

Selecting Rings
Habitat can collect and store practically any
time series tabular data. Out of the box, the
following are collected and buttons for each
are shown in the top viewing row in
MyHabitat.

CPU

Storage

Network

Processes

Uptime

Events

Other

System and processor statistics

Capacity and performance of storage

Networking statistics

Process table over time (potentially filtered)

How long the machine has been running

Local detection of patterns found or data thresholds crossed

Menu of all the other time series data. In habitat jargon, these are also called 'rings' (as
they are ring buffers)

If the ring is present in the source data, the corresponding button will be illuminated. If missing, than
the button is deactivated. Sources that have no rings, for example CSV files, will not activate any
buttons.

Data sets or rings of data that do not correspond to the standard set can be selected by clocking on
the ‘Other’ icon (the filing cabinet draw) and choosing the item from its pull-down menu.

Each ring holds many attributes, such as processor utilisation (%cpu or %work) and these can be
seen in a table or selected in a chart.

See the manual pages habget(1), habput(1) for command line extraction and import of data.

Choosing Views
Data can be viewed in three ways: chart, table and plain text, each of
which is represented by buttons in the right hand pane. Providing that
buttons are active and illuminated, then you can switch the view of the
data between each visualisation.

System Garden

Habitat User Manual 6

CPU Storage Network Processes Uptime Events Other

During the display process and from the hints when the data source is loaded, MyHabitat attempts to
check the format of the data to see if can be structured into a table. If it can, then the appropriate
buttons are activated.

Using Charts
When a chart view is selected, the right hand pane is altered to a display similar to the one below. A
multi-curve chart with scroll bars to pan, date stamps on the horizontal axis, values on the vertical axis
and coloured list of curves on the right

The curves and the corresponding list entires share the same colour. Clicking on a curve’s tick box will
draw or remove the curve in the chart. MyHabitat has a list of default curves to select when a new
data set is plotted and this can be customsed.

Loading Historic Data
MyHabitat loads and caches a small amount of data initially to minimise the system load and keep the
timings short. Typically this is up to one day, although this can be altered using Edit->Preferences from
the menu bar.

The amount of loaded data can be increased by using the time slider at the bottom of the right hand
pane. The slider shows the limits of available data from the source: in the example below, it starts on
the 25th August, 13:00 today is the first data shown in the chart and ends at 20:28.

System Garden

Habitat User Manual 7

Moving the slider to the left fetches the missing data and replots the chart, caching locally to increase
performance.

Zooming and Panning Data
As Habitat is able to show a lot of data in a single view, it is common to zoom in to particular times to
see the detail more clearly.

Using the zoom buttons allows the chart to be increased horizontally
to expand the time scale, vertically to expand the value domain or
both. To return to normal, there is a zoom out function and a ‘home’
function to rest the view to normal.

A second way to zoom, especially useful to see small areas is to drag a box over the
area of interest with the left mouse button. Release the button when drawn and click
inside to enlarge the horizontal and vertical areas.

Once zoomed, move around the chart by using the scroll bars.

System Garden

Habitat User Manual 8

Customisation and Preferences

Customising the GUI
MyHabitat can be adapted to remove panels of the controls that change the visualisation, leaving just
the chart. The panels are toggled using the menu items View->Panels->Choices, View->Panels-
>Curves, View->Panels->Toolbars. Another method is the push buttons at each corner of the chart
which will toggle the panels. The image below shows the stripped off panels with the buttons circled
in red.

Preferences
Selecting the menu option Edit->Preferences will allow you to change the behavior of MyHabitat.

Not all options are available in a self documenting GUI form, however, and need to be set from the
configuration system which is common across all Habitat tools. You can edit the user level
configuration file from MyHabitat by selecting Edit->User Configuration... or with your preferred text
editor on the file ~/.habrc .

System Garden

Habitat User Manual 9

(Configuration may also be set on the command
line [see -C and -c switches in the manual pages of
each tool] and by administrators at multiple levels,
which may account for behaviour not requested by
a user. For more information of the global
configuration of Habitat and how to control it, see
the Administration Manual.)

The first line in ~/.habrc is the magic number
(actually a string) that identifies the format: it must
be set to habitat 1 to show habitat its version. The
remainder of the file contains settings in the form of
simple assignments against property names. The
values may be lists, single values and an implied
positive or negative.

The following are the possible formats accepted by the configuration:

blah blah blah Comments are introduced with '#' and finish at the end of the line;
they may follow any directive

Prop Prop is set to true (1)
+Prop Prop is set to -1
Prop val Prop is set to val
Prop=val Prop is set to val
Prop val1 val2 val3 Prop is set to the array (val1 val2 val3)

Care should be taken when manually changing the file, as the MyHabitat application will also write to
the file when exiting or carrying out configuration tasks. To be safe, it is advisable to edit the file when
MyHabitat is not running to use the inbuilt editor. The application will only update the lines that match
the property being updated, leaving everything else alone (comments, user settings, etc).

All the parts of Habitat share the same configuration mechanism and honour the same command line
switches. In addition to ~/.habrc providing user level configuration, the file etc/habitat.conf is
used to configure at an application level and will potentially change on each release. Site and global
configuration can be achieved by setting up configuration files in central locations and instructing
Habitat to configure remotely in addition to local settings. HTTP servers are ideal for this; see the
manual page habconf(5) and the Administration Manual.

System Garden

Habitat User Manual 10

The Collection Agent: Clockwork

Starting and Stopping Clockwork
Habitat consists of a collection agent for data gathering called clockwork and a set of front ends for
display and extraction of data. MyHabitat, is the main user interface and can be used to easily control
local collection. It will check clockwork is running each time it starts up and will ask to start collection if
it isn’t already in place (although this is configurable). The menu option Data->Collection... or the
Collection button on the status line gives you control over local agent.

Clockwork can also be started on the command line independently of MyHabitat. Run

$ clockwork

on its own and the agent will start silently as a background daemon.

To see if clockwork is running, run the status command

$ statclock
Clockwork process 4616 is running
 was started at 23-Nov-11 01:24:31 PM, user nigel, on /dev/pts/4

To stop the daemon, run

$ killclock
Stopping Clockwork
 pid 4616, user nigel and started on /dev/pts/4 at 23-Nov-11 01:24:31 PM
Stopped

To collect data on several machines without the GUI, just run clockwork on each, which as a daemon
will put itself into the background and by default, log its own errors and warnings into the data store
for later (see Data Sources for a data file description).

If there is a problem launching clockwork, starting

bin/clockwork -d

System Garden

Habitat User Manual 11

will cause diagnostic messages to be sent to stderr, including completion of collection jobs. If the
failure is not obvious, send this output to support@systemgarden.com. If there are still problems, an
exhaustive set of debug messages can be obtained with

bin/clockwork -D

This places clockwork into developer debug mode.

Data Collection
Data can be pulled from a source by clockwork or can have data pushed directly into a data store
from the command line or a programming interface.

In order to pull data, clockwork has a table of jobs that are executed at regular intervals (described
later). By default these jobs run probes that collect all manner of system information and send it to a
data stream called a route. These routes usually address local persistent data storage or remote
network storage, so that information sent to a route will end up being saved.

Data can also be pushed on to routes independently of clockwork, by using an API or the command
line tool habput. This will take text, in the format of a Fat Headed Array (FHA), and will send it to the
route address specified.

A time series of data is built up by repeatedly storing a sequence of tables. Each table defines data at
a period in time and is assigned a time stamp, sequence number and duration. This is often
expressed in a tabular context by using the special columns _time, _seq and _dur.

A table of values are used for each sample, so that multiple instances may be expressed with out the
use of excessive columns. For example, if habitat gathers information about storage, the FHA may
look like the following.

_seq _time id mount kread kwritten rios wios
--
200 1107372138 hda1 / 1.98 15.85 15.09 12779.53
200 1107372138 hda2 /usr 6.78 0.00 60.76 0.00
200 1107372138 hda3 /mnt/windows 0.00 0.00 0.00 0.00
201 1107372143 hda1 / 2.03 9.20 30.94 459.53
201 1107372143 hda2 /usr 57.55 0.52 4.13 0.07
201 1107372143 hda3 /mnt/windows 0.00 0.00 0.00 0.00

In the example above, there are two sets of three lines, with each set sharing the same sequence
number: 200 and 201. These rows belong to the same sample, share the same time stamp but have
different values for id, which is the instance key. In the case of storage, the instance key is a subset of
the device name. Thus, to get a time series for a particular disk (say hda1), select the rows with
id=hda1 and sort on _seq.

System Garden

Habitat User Manual 12

Performance Gathering Probes
A probe is a small piece of code inside clockwork that extracts data from a running system and is
called regularly by the job system. Its job is to sample data, process it and potentially repackage for
data storage or display. The output is a single table per invocation (called a Fat Headed Array when
represented as text) and an error or log stream.

Probes can also act as filters on a queue of data as an input in order to perform mathematics (such as
averaging) or other manipulation. In this way, a job configuration can describe a pipeline of collection
and manipulation jobs state-full data stored.

You can run a probe independently of clockwork on the command line and see its results on standard
output. For example, the following will output the system performance probe on linux; only the first six
columns are included for brevity (there are 35 columns) [The info line is staggered over two lines to
readability].

$ habprobe sys
load1 load5 load15 runque nprocs lastproc
1 minute load average 15 minute load average num num of procs

 5 minute load average num runnable procs last proc run info
"" "" "" "" "" "" key
4 4 4 "" "" "" max
"" "" "" "" "" "" name
abs abs abs abs abs abs sense
nano nano nano u32 u32 u32 type
--
0.08 0.03 0.05 1 335 5142

The following are the probes available for use in clockwork and in the command habprobe, all output
is in table format.

intr
io
names
ps
sys
timer
up
down
net

Interrupt statistics
I/O data, storage and disk statistics
Symbolic data from the kernel
Processes
System data, including CPU and memory statistics
Timer data
Uptime data, how long the system has been up
Down time data, calculated from up probe and can give a view on outages
Network device statistics

To confirm the probe list, run habprobe on its own or look at the manual page for habprobe(1) to see
all the other probes that are available.

System Garden

Habitat User Manual 13

Data Gathering Methods
In addition to running probes to gather data (the probe method), jobs can use other methods to
extract data, as follows

exec
sh
snap
tstamp
sample

pattern
event
replicate
probe

Direct submission to exec(2)
Test submit command line to sh(1)
Take a snapshot of a route
Timestamp in seconds since 1/1/1970 00:00:00
Sample tables from a route, carries out a mathematical process and
produce a single table as a result
Match patterns on groups of routes to raise events
Process event queues to carry out instructions
Replicate rings to and from a repository
Extract data from the built in probes (see above and habprobe(1))

Where as all the probes produce tables, the methods are not obliged to. The probe method is used to
run probes (see above).

The utility habmeth runs the methods on the command line so they can be seen outside of clockwork.

Job Execution
Clockwork uses methods and probes to sample data and build streams of data which get stored
locally. See the manual pages for habprobe(1), habmeth(1) and clockwork(8) for details of the
configuration.

There are several standard job files in the Habitat distribution, prepared for different collection
scenarios (see lib/jobs.*). Select them by running clockwork with -j prefab where prefab is one
of the following

norm
normrep
quick

Normal job file, the current default sampling once every 60 seconds
Normal job file, with 24 hour replication to the defined repository
Higher frequency collection, sampling at 10 seconds

Alternately, job tables can be customised into a file or held in a route and clockwork started with the
switch -J route. Route should be specified using the pseudo-URL route syntax.

In MyHabitat you can see the current job file used by clockwork by selecting Edit->Collection...

Data Storage
Each job line has a method, command and set of arguments. Two outputs are produced from each
job, the result stream and an error stream, analogous to standard output and standard error. Each
output is sent to a stream defined by a route specification.

System Garden

Habitat User Manual 14

Data in Habitat is time series in nature, whether it is tabular or plain text. The primary storage method
is called a ringstore, after the technical description of the data structure, a ring buffer. Examples are
log and uptime data which are a time series set of tables, time stamped and sequenced to make
ordered and unique. The rings have descriptions and a defined maximum length (including infinite)
which can be customised. Data is removed when it exceeds the retained limit. The command line
utility habrs or MyHabitat directly can be used to look at this data. Following normal operating system
conventions, the data file will have the permissions and ownership of the creating user.

System Garden

Habitat User Manual 15

Command Line Uti l it ies

Introduction
Other commands exists to complement the GUI and data collector.

clockwork
killclock
statclock
habrs
habget
habput
habedit
habmeth
habprobe
habrep

The collection agent, runs in the background as a daemon
Stop the clockwork daemon
Print information about clockwork
Command line interface to ringstore storage & admin
Get data from a route
Send data to a route
Edit a route or ringstore (useful for configuring)
Run a clockwork method manually
Run one of the built-in data gathering probe manually
Synchronise data with the repository

A number of command line utilities are provided in the standard Habitat distribution. These address
getting data in and out of habitat's various storage systems, maintaining ringstore files and being able
to get data or run the suite's methods on an ad-hoc basis.

This section describes each tool and their function. Their manual pages are held separately in the
appendix.

Common Arguments
Where possible, all the command line utilities share a common set of arguments. They are:-

-c croute Append user configuration data from croute (route addressing format), rather than the
default file ~/.habrc. For example, -c [/cf.dat file:cf.dat] would load
configuration from cf.dat.

-C cfcmd Append a list of configuration directives from cfcmd, separated by semicolons. For
example, -C “nmalloc=1;dummy=6” would set the configuration variables nmalloc to
1 and dummy to 6

-d Place command in diagnostic mode, giving an additional level of logging and sending
the text to stderr rather than default or configured destinations. Used for clockwork in
daemon mode, will send output to the controlling terminal

System Garden

Habitat User Manual 16

-D Place command in debug mode. As -d above but generating a great deal more
information, designed to be used in conjunction with the source code. Also overrides
normal outputs and will send the text to stderr. Used for clockwork in daemon mode,
will send output to the controlling terminal

-e fmt Change the logging output to one of eight preset alternative formats, some showing
additional information. Fmt must be in the range 0-7, with format 3 being concise but
useful. The formats are:-

0. everything!! time, severity, path, process ids, file, function, line, origin, code, text
1. upper case severity letter, text
2. severity, text
3. justified severity, text, file, function, line
4. upper case severity letter, short date time, binary name, file, function, line, text
5. time, severity, binary path, pid, file, function, line, code, text
6. long time, epoch time, severity, binary path, pid, tid, file, function, line, origin, code,
text
7. justified severity text, justified file, line, function, text

-h Print a help message to stdout and exit
-v Print the version to stdout and exit

If a command does not work as expected, the user may be directed to run it with the -d or -D flags to
help diagnose the problem.

Data Addressing
Most of the commands use route formats to address their data. The format of a route is similar to
URLs and has been extended to cope with the formats of data storage used in habitat. It is fully
explained in the concept section at the beginning of this guide.

habget
The utility habget opens a route specified on the command line, and redirects the output to stdout. As
an example, the following outputs the data collected by the system probe (the data is collected at a
60 second interval):

$ habget rs:/var/lib/habitat/myhost.rs,sys,60
load1 load5 load15 runque nprocs lastproc
1 min load 5 min load 15 min load num run procs num procs last proc run info

4 4 4 "" "" "" max
abs abs abs abs abs abs sense
nano nano nano u32 u32 u32 type
--
0.00 0.00 0.04 1 142 5895

System Garden

Habitat User Manual 17

The data returned has been shortened & edited for brevity. In reality, the info strings are longer and
there are many more columns. The six columns in the example have rows info, max, sense and type.

The most recent sample is returned, which in the example above is a single line. To get more data,
use the additional route qualifiers t= or s=, which explicitly specify the time or sequence. For example,
to return everything in the sys,60 ring, use

rs:/var/lib/habitat/myhost.rs,sys,60,s=0-

Which will return all the records from sequence 0 on to the end. When explicit time and sequence
addresses are used, the output will be augmented with a sequence, time and duration column (_seq,
_time and _dur). All routes are valid addresses, including http: and sqlrs:.

habput
The utility habput inserts data onto a route for storage in a ringstore or SQLringstore. The following
example reads the table headed tom dick harry and stores it in the ring called myring with a 0
second duration contained in the ringstore file myfile.rs.:

$ habput rs:myfile.rs,myring,0 <<END
tom dick harry
--
1 2 3
4 5 6
END

A ring of 0 duration is the convention for data with irregular frequency. Sending the data to a ringstore
causes it to be scanned for a table structure and if passed, will append the data to the ring.

If there is an error in the format of the table or in the address syntax, then the ring will generate an
error and no data will be stored. Appended data is given an ascending sequence number and will be
data stamped.

Please note: rings may be implicitly created with this utility, in which case a default size and
description will be given (which can be overridden with the -s and -t switches). The default ring is
circular with 1,000 slots; when sequence 1,001 is appended, the oldest will be lost. To create a queue
rather than a ring buffer, use -s 0.

Rings may be manipulated (size, name, description, etc) using the utility habrs, which is described in
the Administration manual.

Manual and Automatic Starting
The commands clockwork and killclock are used to start and stop the collection daemon on each
machine. (Unless habitat is installed as a system service, see /etc/init.d/habitat below). To start

System Garden

Habitat User Manual 18

a shared collection service for the system, run clockwork on its own. It will become a background
daemon process, requiring to be stopped with the program killclock, also with no argument.

If a collection process is not running when myhabitat is started, then a pop-up will ask if you wish to
start one (see sections above). In this case, the data file will be owned by the starting user although
the network service will still be available.

If a user wishes to run their own data collection in addition to system collection, they can do so by
providing a custom job table to clockwork, like so:

clockwork -j jobroute

Jobroute must be a route but typically is a file created for the specific situation. Job tables are
described in the Administration Manual, and describe the probes to run, their frequency and where
their storage is located. The -j flag does not daemonise and stays attach to the controlling terminal,
so that it may be controlled and stopped like a normal shell level process.

/etc/init.d/habitat

When habitat is fully installed as a system service or daemon, a single script manages the starting and
stopping of clockwork. It is automatically run on on the machine's start-up.

As root, one can manually control clockwork collection using the conventional command syntax:

/etc/init.d/habitat [start | stop | status]

If this is the case in your installation, you do not need to manually start a personal instance of
clockwork unless you wish to run specific jobs.

This command is covered in greater depth in the Administration manual.

Other commands
The remaining commands are covered by the Administration Manual:-

habedit Edits configuration tables within ringstores
habmeth Runs clockwork methods from the command line
habprobe Runs built-in data collection probes from the command line
habrep Forces a replication cycle to take place
habrs Interactive ringstore utility, allowing administration of the data held in ringstore files

System Garden

Habitat User Manual 19

Data Formats

Habitat supports a number of data formats in the import and export of data. Chief of these is the Fat
Headed Array (FHA), which a variation on Comma Separated Values (CSV).

FHA uses a tab separator between columns and uses optional quotes (“) on values when needing to
embed tabs. The header line is expanded to include additional sets of information for each column,
known as info rows, which are printed over several lines below the single row header. An example is
shown below

tom dick harry
Thomas Richard Harold first_name
Smith Brown Bloggs last_name
------ ------- ------
1 2 3
4 5 6
7 8 9

The single row of column names and the zero or more info rows, form an extended header block that
is terminated by two or more dashes (--) on a single line. In the example above, the dashes have been
extended to form a ruler line of the width of each column, similar to the convention of a SQL table
display. Following the ruler is the tabulated array of values, which may be any sequence of characters
excluding tab (\t) and the double quote (“). In summary, The fat headed array must have the same
number of columns through out each row, but will be one more for the second and successive
headers rows (the info rows).

Optionally, other formats can be used: CSV for comma (,) separated values, PSV for pipe (|) separated
values, TSV for tab separated values and SSV for space () separated values. None of these formats
contain a fat header, which contain info rows and a header delimiter.

System Garden

Habitat User Manual 20

Header Line: columns
are tom, dick & harry

Two info lines: first_name
and last_name

eg. The tom column has a first_name of
Thomas and last_name of Smith

Upload, Download and
Replication with System Garden

Use of System Garden’s repository is not supported in the Alpha series of Habitat releases.

System Garden

Habitat User Manual 21

Manual Pages

myhabitat

Gtk+ Graphical interface to Habitat

SYNTAX
myhabitat [-c <purl>] [-C <cfcmd>] [-e <fmt>] [-dDhsv]

DESCRIPTION
The standard graphical interface for Habitat, able to view locally captured data, remote Habitat in-
stances and repository data provided by Harvest.

When the tool starts, a check is made for the existence of the local collection agent, clockwork(8). If
it is not running, the user is asked if they wish to run it and if it should autostarted as a daemon in
the future.

In appearance, clockwork resembles that of a file manager, with choices on the left and visualisa-
tion on the right. If files or other data sources have been opened before, then their re-opening is
attempted by MyHabitat and will be placed under the FILES and HOSTS nodes in the choice
tree.

See the DATA SOURCES section for details of the data that can be viewed, NAVIGATION for how
to interpret the data structures and VISUALISATION for how to examine the data once displayed.

On Linux, the GUI requires Xwindows; use other front ends or command line tools if you do not
have that facility.

OPTIONS

-c <purl> Append user configuration data from the route <purl>, rather than the default file
~/.habrc.

-C <cfcmd> Append a list of configuration directives from <cfcmd>, separated by semicolons.
-d Place MyHabitat in diagnostic mode, giving an additional level of logging and

sending the text to stderr rather than the default or configured destinations. In
daemon mode, will send output to the controlling terminal.

-D Place MyHabitat in debug mode. As -d above but generating a great deal more
information, designed to be used in conjunction with the source code. Also over-
rides normal outputs and will send the text to stderr. In daemon mode, will send
output to the controlling terminal.

-e <fmt> Change the logging output to one of eight preset alternative formats, some showing
additional information. <fmt> must be 0-7. See LOGGING below.

-h Print a help message to stdout and exit

System Garden

Habitat User Manual 22

-v Print the version to stdout and exit

-s Run in safe mode, which prevents myhabitat automatically loading data from files
or over the network from peer machines or the repository. Use if myhabitat start up
time is excessively long. Once started, all data resourcese can be loaded manually.

DATA SOURCES
Currently, data can be obtained from four types of sources:-

Local Host Data collected from same machine running MyHabitat appears under HABI-
TAT in the choice tree as 'This Host: hostname'. If data is not being collected lo-
cally, you will be asked if you wish to start on initiation. It is not essential to col-
lect data, however, and the requests to do so can be repressed, making MyHabi-
tat a viewer for the data of others.

File Rich data is stored in format known as a ringstore, which is a structured format
using GDBM. It allows multiple rings to be stored in single container and can
contain live or historic data. Other formats include CSV files and an enhanced
version known as 'Fat Headed Array' (FHA). Open them with File->Open or ^O
and use the file chooser. The file will appear under FILES in the choice tree.

Repository Replicated data once centralised will appear under the REPOSITORY node in
the choice tree if configured with account details. Select Edit->Harvest... or Edit-
>Repository... to configure. The Habitat Administration Guide discusses how to
handle repository accounts in larger installations.

Network Data Data for an individual machine can be read from the repository or a peer Habitat
instance on another host (using the peer's clockwork daemon). Select File->Host
or ^H, type in the hostname and pick repository or host as a source. Your selec-
tion will appear under HOSTS in the choice tree.

Files and hosts can be removed by using the menu item File->Close... (^C) and selecting from a list
or by clicking the right mouse button over the tree entry.

NAVIGATION
The choice pane on the left holds actively attached or remembered valid data sources, similar to a
file browser. It is divided in to a number of sections to categorise the sources and help in naviga-
tion.

HABITAT Data from the local machine or the operation of the collection agent
FILES Files that have been opened by you and if they exist, files that have been re-

membered from previous sessions
HOSTS Remote Habitat hosts attached now or in the past, providing that they are still

running the collection agent (clockwork). Can be peer instances of Habitat or
be attached directly from a repository (see below)

REPOSITORY A central collection of performance and statistical data, able to be browsed in
a hierarchical organisation tree. To get to a specific machine, one needs to
know its organisational location and traverse to it in the tree. Whilst this aids
browsing, one may wish to use the File->Host option to go directly to a ma-
chine.

Habitat's collction agent will typically send local collection data to a repository
for long term storage and analysis, saving excessive load on machines that col-
lect data. Harvest (http://www.systemgarden.com/harvest) is typically used
as a repository.

System Garden

Habitat User Manual 23

http://www.systemgarden.com/harvest
http://www.systemgarden.com/harvest

Opening the data source trees will display a default view or a summary and various controls to
navigate the view as needed.

VISUALISATION
The right hand section of the window is used for visualisation. Its major uses are for charting and
displaying tables.

Once the data source is selected from the choice pane, the source is queried to see what data it has
to chart. In Habitat, these sets of data within a source are called a 'ring' (after the term ring buffer)
and each is assigned a button which is displayed in the visualisation pane.:-

CPU Processor data and other system wide information. Habitat stores these in the
ring sys.

Storage Disk, network (NAS) and block (SAN) storage are keyed by the device name and
held in the ring io. Habitat shows the performance, capacity and mount point of
file systems where applicable in a single collection

Network Statistics from the network devices, keyed by the device name; Habitat stores
these in the net ring.

Processes Full details available from your operating system about 'interesting' processes. By
default, these are ones that exceed a low threshold of utilisation, which indicates
that they are more than trivially active. Habitat stores this data in the ring ps, in-
dexed by the process ID and the thresholds are conventionally stored in the file
$HAB/lib/ps.conf. A threshold is applied to reduce the amount of data from
processes but at the risk of losing a complete picture. This can be customised by
changing the ps.conf configuration file

Uptime Accumulated up and down time of the system, stored in the ring up

Events Events raised by Habitat when executing local pattern matching are stored in the
ring event.

Other Other is a menu button that holds all other rings in a pull down menu. Selecting
one of these will change the display to that data, but the ring names are not
changed: a ring name of Ifred will have an entry called fred.

The standard sets of data, such as CPU (sys) and Storage (io) have default curves that are displayed
when the graph is first drawn. The list of curves down the right hand side are buttons used to draw
or remove data on the graph. When drawn, the button changes colour to that of of the curve dis-
played.

A set of buttons change how the seleted data is seen. Options are:-

Text Data is treated as text rather than structured tabular data. This is useful when the data
is unstructured, not suitable to chart and does not parse.

Table Data is shown as a structured table, suitable for CSV for FHA files in addition to Habi-
tat's ringstores

Chart Data is displayed as a line chart with a curve selection check list to the side. Clicking
the check list will draw and remove curves from the shared charting space. All data is
shown in a line chart style with a set of buttons below to zooms in and out of the dis-
played chart, and a set of scroll bars which can be used to panned the data

When charting, the visualisation section is divided into additional parts. The greatest is used for
the graph itself, with other areas being used for visualisation type, curve selection, zooming and
data held. If the data is multi-instance, such as with multiple disks, then a further area is added to
control the number of instance graphs being displayed.

A time slider shows the data that is available for this ring at the source and how much of it is cur-
rently displayed. Moving the slider will load additional data and redraw more data in the display.

System Garden

Habitat User Manual 24

Data is cached in MyHabitat to minimise the number of fetches to the data source. When data is
fetched, whole records are collected (row oriented rather than column oriented) which means curve
selection is fast at the expense of larger data fetches.

Whilst the largest amount of data displayed is selected from the choice tree, it is possible to 'zoom-
in' to particular times very easily using the graph. There are two methods: either drag the mouse of
the area of interest, creating a rectangle and click the left button inside or use the x and y axis zoom
buttons from the Zoom & Scale area. The display shows the enlarged view and changes the scale
the x & y rulers. The time ruler is changes mode to show the most useful feedback of time at that
scale. To move back and forth along time, move the horizontal scrollbar. To zoom out, either click
the right mouse button over the graph or use the zoom-out button in the Zoom & Scale area.

MENU
The File menu adds and removes file and other data sources to the choice tree. It also contains im-
port and export routines to convert between native datastores and plain text, such as csv and tsv
files.

The View menu controls the display and refresh of choice and visualisation. It also give the ability
to save or send data being displayed to e-mail, applications or a file.

The Collect menu controls data collection, if you own the collection process.

The Graph menu changes the appearance of the chart and is only displayed when the graph ap-
pears.

Finally, the Help menu gives access to spot help, documentation and links to the system garden
web site for product information. Most help menu items need a common browser on the users path
to show help information.

LOGGING
MyHabitat generates information and error messages. By default, errors are captured internally
and can be displayed in the visualisation area by clicking on the logs node under this client.

Also available in this area are the log routes, which shows the how information of different sever-
ity is dealt with and configuration, which shows the values of all the current configuration direc-
tives in effect.

See habconf(5) for more information.

FILES
Locations alter depending on how the application is installed.

For the habitat configuration

 ~/.habrc, $HAB/etc/habitat.conf or /etc/habitat.conf

For graphical appearence: fonts, colours, styles, etc

 $HAB/lib/myhabitat.rc or /usr/lib/habitat/myhabitat.rc

For the help information

 $HAB/lib/help/ or /usr/lib/habitat/help/

ENVIRONMENT VARIABLES

System Garden

Habitat User Manual 25

DISPLAY The X-Windows display to use
PATH Used to locate a browser to display help information. Typical browsers looked for

are Mozilla, Chrome, Opera, Internet Explorer, Netscape, Konqueror, Chimera
HOME User's home directory

AUTHORS
Nigel Stuckey <nigel.stuckey@systemgarden.com>

SEE ALSO
clockwork(8), killclock(8), statclock(8), habedit(8), habrep(8), habconf(5), myhabitat(1), habget(1),
habput(1), habrs(1), habprobe(1), habmeth(1)

System Garden

Habitat User Manual 26

mailto:nigel.stuckey@systemgarden.com
mailto:nigel.stuckey@systemgarden.com

clockwork
Collection daemon for the Habitat suite

SYNTAX
clockwork [-c <purl>] [-C <cfcmd>] [-e <fmt>] [-dDhsfv] [-j <stdjob> | -J <jobrt>]

DESCRIPTION
Clockwork is the local collection agent for Habitat. It runs as a daemon process on each machine
being monitored and is designed to carry out data collection, log file monitoring, data-driven ac-
tions and the distribution of collected data.

The default jobs are to collect system, network, storage, uptime and some busy process statistics on
the local machine and make them available in a standard place. The collection of process data and
file monitoring is available by configuring the jobs that drive clockwork. Configuration can be car-
ried out at a local, regional and global level to allow delegation. One public and many private in-
stances of clockwork can exist on a single machine, allowing individual users to carry out custom
data collection Data is normally held in ring buffers or queues on the local machine's storage using
datastores held to be self contained and scalable. Periodic replication of data rings to a repository is
used for archiving and may be done in reverse for central data transmission.

OPTIONS

-c <purl> Append user configuration data from the route <purl>, rather than the default file
~/.habrc.

-C <cfcmd> Append a list of configuration directives from <cfcmd>, separated by semicolons.
-d Place clockwork in diagnostic mode, giving an additional level of logging and

sending the text to stderr rather than the default or configured destinations. In
daemon mode, will send output to the controlling terminal.

-D Place clockwork in debug mode. As -d above but generating a great deal more in-
formation, designed to be used in conjunction with the source code. Also overrides
normal outputs and will send the text to stderr. In daemon mode, will send output
to the controlling terminal.

-e <fmt> Change the logging output to one of eight preset alternative formats, some showing
additional information. <fmt> must be 0-7. See LOGGING below.

-h Print a help message to stdout and exit

-v Print the version to stdout and exit

-s Disable the public data service from being run, but will continue to save data as dic-
tated by configuration.

-j <stdjob> Select from standard job tables, allowing different modes or behaviour to be se-
lected easily from known good configurations. See COLLECTION MODES below
for values and description of <stdjob>.

-J <jobrt> Override standard job table with a private one provided by the route <jobrt>.
Clockwork will not daemonise, run a data service or take an exclusive system lock
(there can only be one public clockwork instance). Implies -s and alters the log-
ging output to stderr, unless overridden with the range of elog configuration direc-
tives.

-f Run in the foreground and don't daemonise

COLLECTION MODES

System Garden

Habitat User Manual 27

default Default mode. One minute samples recorded to disk, deriving three sets of aver-
ages: 4h@1m, 1d@5m, 7d@15m, 1mo@1h

DEFAULTS
When clockwork starts it reads $HAB/etc/habitat.conf and ~/.habrc for configuration data (see
CONFIGURATION for more details). Unless overridden, clockwork will then look for its jobs inside
the default public datastore for that machine, held in $HAB/var/<hostname>.grs (the route ad-
dress is grs:$HAB/var/<hostname>.grs,jobs,0, see below for an explanation). If it does not find
the jobs, clockwork bootstaps itself by copying a default job template from the file
$HAB/lib/clockwork.jobs into the public datastore and then carries on using the datastore version.

The default jobs run system, network and storage data gathering probes every 60 seconds. It saves
results to the public datastore using the template route
grs:$HAB/var/<hostname>.grs,<jobname>,60 and errors to
grs:$HAB/var/<hostname>.grs,err_<jobname>,60

All other errors are placed in grs:$HAB/var/<hostname>.grs,log,0

ROUTES
To move data around in clockwork, an enhanced URL is used as a form of addressing and is called
a 'route' (also known as a pseudo-url or p-url in documentation). The format is
<driver>:<address>, where driver must be one of the following:-

file: fileov: reads and write to paths on the filesystem. The format is file:<file path>, which
will always append text to the file when writing. The fileov: driver will overwrite
text when first writing and is suitable for configuration files or states.

http: https: reads and writes using HTTP or HTTPS to a network address. The address is the
server name and object name as a normal URL convention.

grs: read and writes to a ring store, the primary local storage mechanism. Tabular data
is stored in a time series in a queue or ring buffer structure. Multiple rings of data
can be stored in a single ringstore file, using different names and durations.

sqlrs: reads and writes tabular data to a remote repository service using the SQL Ring-
store method, which is implemented over the HTTP protocol. Harvest provides
repository services. Stores tabular data in a time series, addressed by host name,
ring name and duration. Data is stored in a queue or ring buffer storage.

CONFIGURATION
By default, clockwork will collect system, network and storage statistics for the system on which
it runs. All the data is read and written from a local datastore, apart from configuration items
which come from external sources. These external configuration sources govern the operation of all
the habitat commands and applications.

Refer to the habconf(5) man page for more details.

JOB DEFINITIONS
Jobs are defined in a multi columned text format, headed by the magic string 'job 1'. Comments
may appear anywhere, starting with '#' and running to the end of the line.

Each job is defined on a single line containing 11 arguments, which in order are:-

System Garden

Habitat User Manual 28

1. start When to start the job, in seconds from the starting of clockwork
2. period How often to repeat the job, in seconds
3. phase Not yet implemented

4. count How many times the job should be run, with 0 repeating forever

5. name Name of the job

6. requester Who requested the job, by convention the email address

7. results The route where results should be sent

8. errors The route where errors should be sent

9. nslots The number of slots created in the 'results' and 'errors' routes, if applicable (ap-
plies to timestore and tablestore).

10.method The job method

11.command The arguments given to each method

See the habmeth(1) manpage for details of the possible methods that may be specified and the
commands that can accept.

DATA ORGANISATION
Data is stored in sequences of tabular information. All data has an ordered independently of time,
allowing multiple separate samples that share the same time interval. This data is stored in a ring-
buffer, which allows data to grow to a certain number of samples before the oldest are removed and
their space recycled. Throughout the documentation, each collection of samples is known as a
ring, and may be configured to be a simple queue, where data management is left up to adminis-
trators.

To limit the amount of storage used, data in a ring can be sampled periodically to form new sum-
mary data and stored in a new ring with a different period. In habitat, this is known as cascading
and takes place on all the default collection rings. Several levels of cascading can take place over
several new rings, This allows summaries at different frequencies to be collected and tuned to local
requirements.

See the habmeth(1) man page for more information about the cascade method.

DATA REPLICATION
Any ring of information can be sent to or from the repository at known intervals, allowing a deter-
ministic way of updating both repository and collection agent.

This is implemented as a regular job which runs the replicate method. Data for the method is
provided by configuration parameters which can be set and altered in the organisation. Thus the
replication job does not normally need to be altered to change the behaviour.

See the habmeth(1) man page for the replicate method and the formation of the configuration
data.

LOGGING
Clockwork and the probes that provide data, also generate information and error messages. By
convention, these are stored in the route specification ts:$hab/var/<host>.ts,log The convention
for probes is to store their errors in ts:$HAB/var/<host>.ts,e.<jobname>.

To override the logging location, use the range of elog configuration directives, or rely on the op-
tions -d, -D, -j, which will alter the location to stderr as a side effect. See habconf(5) for details.
Probe logging is configurable for each job in the job table.

System Garden

Habitat User Manual 29

The logging format can be customised using one of a set of configuration directives (see hab-
conf(5)). For convenience, the -e flag specifies one of eight preconfigured text formats that will be
sent to the configured location:-

0 all 17 possible log variables
1 severity character & text
2 severity & text

3 severity, text, file, function & line

4 long severity, short time, short program name, file, function, line & text

5 date time, severity, long program name, process id, file, function, line, origin, code & text

6 unix ctime, seconds since 1970, short program name, process id, thread id, file, function,
line, origin, code & text

7 severity, file, line, origin, code, text

 FILES
If run from a single directory $HAB:-

$HAB/bin/clockwork
$HAB/var/<hostname>.grs, $HAB/lib/clockwork.jobs
/tmp/clockwork.run
~/.habrc, $HAB/etc/habitat.conf

If run from installed Linux locations:-
/usr/bin/habitat
/var/lib/habitat/<hostname>.grs, /usr/lib/habitat/clockwork.jobs
/var/lib/habitat/clockwork.run
~/.habrc, /etc/habitat.conf

ENVIRONMENT VARIABLES

EXAMPLES
Type the following to run clockwork in the standard way. This assumes it is providing public data
using the standard job file, storing in a known place and using the standard network port for the
data service.

 clockwork

On a more secure system, you can prevent the data service from being started

 clockwork -s

Alternatively you can run it in a private mode by specifying '-J' and a replacement job file.

 clockwork -J "file:mywork.job"

AUTHORS
Nigel Stuckey <nigel.stuckey@systemgarden.com>

SEE ALSO
killclock(8), statclock(8), habedit(8), habrep(8), habconf(5), myhabitat(1), habget(1), habput(1),
habrs(1), habprobe(1), habmeth(1)

System Garden

Habitat User Manual 30

mailto:nigel.stuckey@systemgarden.com
mailto:nigel.stuckey@systemgarden.com

statclock
Reports on running clockwork, Habitat's collection agent

SYNTAX
statclock

DESCRIPTION
Reports on the running public instance of clockwork on the local machine.

This shell script locates the lock file for clockwork, which is the collection agent for the Habitat
suite. It prints the process id, owning user, controlling terminal and start time of the daemon if it is
found in the process table. If not found, then the lock file is removed if it is there and a message to
that effect is printed

Private instances of clockwork (started with -j option) can not be stopped by this method, as they
do not register in a lock file. Instead, they should be controlled by conventional process control
methods.

FILES
/tmp/clockwork.run
/var/run/clockwork.run

EXAMPLES
Typing the following:-

 statclock

will result in a display similar to below and the termination of the clockwork daemon.

 Clockwork process 17502 is running
 was started at 19-Apr-11 08:01:45 AM, user nigel, on /dev/pts/1

AUTHORS
Nigel Stuckey <nigel.stuckey@systemgarden.com>

SEE ALSO
clockwork(8), killclock(8), habedit(8), habrep(8), habconf(5), myhabitat(1), habget(1), habput(1),
habrs(1), habprobe(1), habmeth(1)

System Garden

Habitat User Manual 31

mailto:nigel.stuckey@systemgarden.com
mailto:nigel.stuckey@systemgarden.com

killclock
Stops clockwork, Habitat's collection agent

SYNTAX
killclock

DESCRIPTION
Stops the public instance of clockwork running on the local machine.

This shell script locates the lock file for clockwork, which is the collection agent for the Habitat
suite. It prints the process id, owning user, controlling terminal and start time of the daemon, be-
fore sending it a SIGTERM.

No check is made that the clockwork process has terminated before this script ends.

Private instances of clockwork (started with -j option) can not be stopped by this method, as they
do not register in a lock file. Instead, they should be controlled by conventional process control
methods.

FILES
/tmp/clockwork.run
/var/run/clockwork.run

EXAMPLES
Typing the following:-

 killclock

will result in a display similar to below and the termination of the clockwork daemon.

 Stopping pid 2781, user nigel and started on /dev/pts/2 at 25-May-04 08:08:55 AM

AUTHORS
Nigel Stuckey <nigel.stuckey@systemgarden.com>

SEE ALSO

clockwork(8), statclock(8), habedit(8), habrep(8), habconf(5), myhabitat(1), habget(1), habput(1),
habrs(1), habprobe(1), habmeth(1)

System Garden

Habitat User Manual 32

mailto:nigel.stuckey@systemgarden.com
mailto:nigel.stuckey@systemgarden.com

habget
Send habitat data to standard output

SYNTAX
habget [-c <purl>] [-C <cfcmd>] [-e <fmt>] [-dDhv] [-E] <route>

DESCRIPTION
Open <route> using habitat's route addressing and send the data to stdout.

See clockwork(1) for an explination of the route syntax

OPTIONS

-c <purl> Append user configuration data from the route <purl>, rather than the default file
~/.habrc.

-C <cfcmd> Append a list of configuration directives from <cfcmd>, separated by semicolons.
-d Place habget in diagnostic mode, giving an additional level of logging and sending

the text to stderr rather than the default or configured destinations. In daemon
mode, will send output to the controlling terminal.

-D Place habget in debug mode. As -d above but generating a great deal more infor-
mation, designed to be used in conjunction with the source code. Also overrides
normal outputs and will send the text to stderr. In daemon mode, will send output
to the controlling terminal.

-e <fmt> Change the logging output to one of eight preset alternative formats, some showing
additional information. <fmt> must be 0-7. See LOGGING below.

-h Print a help message to stdout and exit

-v Print the version to stdout and exit

-E Escape characters in data that would otherwise be unprintable

EXAMPLES
To output the job table from an established datastore file used for public data collection. This uses
the ringstore driver.

 habget grs:var/myhost.grs,clockwork,0

To get the most recent data sample from the 60 second sys ring from the same datastore as above.

 habget grs:var/myhost.grs,sys,60

To find errors that may have been generated by clockwork.

 habget grs:var/myhost.grs,log,0

AUTHORS
Nigel Stuckey <nigel.stuckey@systemgarden.com>

SEE ALSO
clockwork(8), killclock(8), statclock(8), habedit(8), habrep(8), habconf(5), myhabitat(1), hab-
put(1), habrs(1), habprobe(1), habmeth(1)

System Garden

Habitat User Manual 33

mailto:nigel.stuckey@systemgarden.com
mailto:nigel.stuckey@systemgarden.com

habput
Store data from standard input into Habitat

SYNTAX
habput [-s <nslots> -t <desc>] [-c <purl>] [-C <cfcmd>] [-e <fmt>] [-dDhv] <route>

DESCRIPTION
Open <route> using habitat's route addressing and send data from standard input (stdin) to the
route.

See clockwork(1) for an explanation of the route syntax

OPTIONS

-c <purl> Append user configuration data from the route <purl>, rather than the default file
~/.habrc.

-C <cfcmd> Append a list of configuration directives from <cfcmd>, separated by semicolons.
-d Place habget in diagnostic mode, giving an additional level of logging and sending

the text to stderr rather than the default or configured destinations. In daemon
mode, will send output to the controlling terminal.

-D Place habget in debug mode. As -d above but generating a great deal more infor-
mation, designed to be used in conjunction with the source code. Also overrides
normal outputs and will send the text to stderr. In daemon mode, will send output
to the controlling terminal.

-e <fmt> Change the logging output to one of eight preset alternative formats, some showing
additional information. <fmt> must be 0-7. See LOGGING below.

-h Print a help message to stdout and exit

-v Print the version to stdout and exit

-s <nslots> Number of slots for creating ringed routes (default 1000); <nslots> of 0 gives a
queue behavior where the oldest data is not lost

-t <desc> Text description for creating ringed routes

EXAMPLES
To append a sample of tabular data to a table store, use a tablestore driver. This will create a ring
which can store 1,000 slots of data.

 habput grs:var/myfile.grs,myring

To save the same data, but limit the ring to just the most recent 10 slots and give the ring a descrip-
tion

 habput -s 10 -t "my description" grs:var/myfile.grs,myring

The same data, stored to the same location, but with an unlimited history (technically a queue). To
make the ring readable in ghabitat with current conventions, we store with the prefix '.r'

 habput -s 0 -t "my description" grs:var/myfile.grs,r.myring

To save an error record, use a ringstore driver

 habput -s 100 -t "my logs" grs:var/myfile.grs,mylogs

System Garden

Habitat User Manual 34

AUTHORS
Nigel Stuckey <nigel.stuckey@systemgarden.com>

SEE ALSO
clockwork(8), killclock(8), statclock(8), habedit(8), habrep(8), habconf(5), myhabitat(1), habget(1),
habrs(1), habprobe(1), habmeth(1)

System Garden

Habitat User Manual 35

mailto:nigel.stuckey@systemgarden.com
mailto:nigel.stuckey@systemgarden.com

habrs
Command line interface to Ringstore storage

SYNTAX
habrs [-c <purl>] [-C <cfcmd>] [-e <fmt>] [-dDhv] [file [ring [dur]]]

DESCRIPTION
A Ringstore is a type of storage system designed to hold Fat Headed Arrays (FHA) in time se-
ries. It is the primary method of storing data locally on a machine in Habitat.

The command can be run with optional file, ring and dur arguments for names of the Ringstore
file, the time series ring and its duration. Alternatively, these can be specified with the commands
'file', 'ring' and 'duration' once habrs has started.

The prompt will contain the current file and ring name with duration.

OPTIONS

-c <purl> Append user configuration data from the route <purl>, rather than the default file
~/.habrc.

-C <cfcmd> Append a list of configuration directives from <cfcmd>, separated by semicolons.
-d Place habget in diagnostic mode, giving an additional level of logging and sending

the text to stderr rather than the default or configured destinations. In daemon
mode, will send output to the controlling terminal.

-D Place habget in debug mode. As -d above but generating a great deal more infor-
mation, designed to be used in conjunction with the source code. Also overrides
normal outputs and will send the text to stderr. In daemon mode, will send output
to the controlling terminal.

-e <fmt> Change the logging output to one of eight preset alternative formats, some showing
additional information. <fmt> must be 0-7. See LOGGING below.

-h Print a help message to stdout and exit

-v Print the version to stdout and exit

COMMANDS
The following commands are accepted:-

! <cmd> sh <cmd> Run <cmd> in a shell (see chsh(1) for your shell choice)
? [<cmd>] help
[<cmd>]

Without <cmd>, print a tabular list of commands. Otherwise print
an explanation and usage of <cmd>

bye exit e quit q All of the above commands will exit habrs

close Closes the currently open file and ring

create <file> <perm>
<ring> <lname> <desc>
<nslots> <dur>

Create a new time series ring, where
<file> name of holstore file to contain the ring
<perm> file permissions (eg 0644)
<ring> name of ringstore ring
<lname> long name of ring
<desc> text description of ring
<nslots> number of slots in ring, 0 for unlimitied
<dur> secs duration of each sample, 0 for irregular

System Garden

Habitat User Manual 36

duration <dur> dur
<dur>

Open the ring using the previously specified ring name in the cur-
rently open file. The duration should be a positive integer, which
represents the length in seconds of each sample. Alternatively, it
may be 0 to represent an irregular interval.

footprint Print the current Ringstore file size

get Get the next table in the time series. You should have an open file
and ring

getall Get all the tables in the series and print as a single table with the fol-
lowing columns:-
_seq sequence number
_time time
_dur duration

goto <seq> jumpto
<seq>

Goto a specific sequence number <seq> in the time series. The next
call to get will print that table

jump <nseq> If <nseq> is positive, move forward <nseq> places in the time series.
If negative, move backwards.

ls lsrings List the rings available in the current file

mget <nseq> Return data from the next <nseq> sequences and advance to the
next unread sequence. The data is printed as a single table with the
following columns.
_seq sequence number
_time time
_dur duration

open <file> [<ring>
[<password>]]

Open a Ringstore file and optionally a time sries ring. If <ring> is
not specified, then it can be specified with 'ring' afterwards (also see
lsring). <password> is not currently supported.

purge <nseq> Remove the oldest <nseq> sequences from the time series. If more
are removed that are present in the current ring, then this effectively
empties the ring

put Appends a new table to the end of the time series, which will be read
from stdin (the keyboard or input pipe). Does not alter the current
sequence to next read.

remain Prints the amount of space free in the filesystem that houses the cur-
rently open Ringstore file.

resize Change the number of sequence slots in the current time series ring

ring <rname> Change the current time series ring to be <rname>. This will close
any previously open ring but will not affect the current file.
<rname> must exist in the current file.

rm Remove the current ring. You will be prompted to confirm the action
to prevent accidental eraseure.

rs <info> Show the underlying ringstore structure in the form of tables. The
secondary argument is needed to show the table as follows:-
s | superblock superblock
r | rings ring directory
h | headers header hash table
i | index record index

stat Print statisticas about the current file and ring

System Garden

Habitat User Manual 37

 FILES
Locations alter depending on how the application is installed.

For the habitat configuration

 ~/.habrc
 $HAB/etc/habitat.conf or /etc/habitat.conf

For the help information

 $HAB/lib/help/ or /usr/lib/habitat/help/

ENVIRONMENT VARIABLES
 HOME User's home directory

AUTHORS
Nigel Stuckey <nigel.stuckey@systemgarden.com>

SEE ALSO
clockwork(8), killclock(8), statclock(8), habedit(8), habrep(8), habconf(5), myhabitat(1), habget(1),
habput(1), habprobe(1), habmeth(1)

System Garden

Habitat User Manual 38

mailto:nigel.stuckey@systemgarden.com
mailto:nigel.stuckey@systemgarden.com

habmeth
Run Habitat's clockwork methods on the command line

SYNTAX
habmeth [-c <purl>] [-C <cfcmd>] [-e <fmt>] [-dDhv] <command>

DESCRIPTION
Runs a Habitat method, that would be available to jobs within the clockwork collection program.

<Command> should start with the name of the method and the remaining arguments to be applied
to the methods. The probe method is missing, but can be run on the command line using hab-
meth.

With no arguments, a list of available methods are printed. Some methods do not require addi-
tional arguments other than the method name.

OPTIONS

-c <purl> Append user configuration data from the route <purl>, rather than the default file
~/.habrc.

-C <cfcmd> Append a list of configuration directives from <cfcmd>, separated by semicolons.
-d Place habmeth in diagnostic mode, giving an additional level of logging and send-

ing the text to stderr rather than the default or configured destinations. In daemon
mode, will send output to the controlling terminal.

-D Place habmeth in debug mode. As -d above but generating a great deal more in-
formation, designed to be used in conjunction with the source code. Also overrides
normal outputs and will send the text to stderr. In daemon mode, will send output
to the controlling terminal.

-e <fmt> Change the logging output to one of eight preset alternative formats, some showing
additional information. <fmt> must be 0-7. See LOGGING below.

-h Print a help message to stdout and exit

-v Print the version to stdout and exit

EXAMPLES
To find the available methods

 habmeth

run a habitat method stand alone, where methods are:-

exec Direct submission to exec(2)
sh Test submit command line to sh(1)
snap Take a snapshot of a route
tstamp Timestamp in seconds since 1/1/1970 00:00:00
sample Sample tables from a route, carries out a mathematical process and produce a sin-

gle table as a result
pattern Match patterns on groups of routes to raise events

event Process event queues to carry out instructions

replicate Replicate rings to and from a repository

System Garden

Habitat User Manual 39

The tstamp method returns the time in seconds from the epoch. The example would be

 habmeth tstamp

 1094314985

AUTHORS
Nigel Stuckey <nigel.stuckey@systemgarden.com>

SEE ALSO
clockwork(8), killclock(8), statclock(8), habedit(8), habrep(8), habconf(5), myhabitat(1), habget(1),
habput(1), habrs(1), habprobe(1)

System Garden

Habitat User Manual 40

mailto:nigel.stuckey@systemgarden.com
mailto:nigel.stuckey@systemgarden.com

habprobe
Run Habitat's data probes on the command line

SYNTAX
habprobe [-c <purl>] [-C <cfcmd>] [-e <fmt>] [-dDhv] <probe> [<arguments> ...]

DESCRIPTION
Runs a built in Habitat probe to extract data from the system and print the resulting table on stan-
dard out. The data is represented in Fat Headed Array (FHA) format. <Probe> should be one of the
probe names shown below and some take additional arguments.

This command is the equivalent of the following line in the job file of the clockwork collection
tool

 probe probename “arguments...”

The difference being that output is sent to a route for storage or onward data stream.

With no arguments, a list of available probes for you system are printed along with usage.

OPTIONS

-c <purl> Append user configuration data from the route <purl>, rather than the default file
~/.habrc.

-C <cfcmd> Append a list of configuration directives from <cfcmd>, separated by semicolons.
-d Place habprobe in diagnostic mode, giving an additional level of logging and

sending the text to stderr rather than the default or configured destinations. In
daemon mode, will send output to the controlling terminal.

-D Place habprobe in debug mode. As -d above but generating a great deal more in-
formation, designed to be used in conjunction with the source code. Also overrides
normal outputs and will send the text to stderr. In daemon mode, will send output
to the controlling terminal.

-e <fmt> Change the logging output to one of eight preset alternative formats, some showing
additional information. <fmt> must be 0-7. See LOGGING below.

-h Print a help message to stdout and exit

-v Print the version to stdout and exit

PROBE NAMES
The following probe names are accepted:-

intr Interrupt statistics
io I/O data, storage and disk statistics
names Symbolic data from the kernel
ps Processes
sys System data, including CPU and memory statistics
timer Timer data
up Uptime data, how long the system has been up
down Down time data, calculated from up probe and can give a view on outages
net Network device statistics

System Garden

Habitat User Manual 41

AUTHORS
Nigel Stuckey <nigel.stuckey@systemgarden.com>

SEE ALSO
clockwork(8), killclock(8), statclock(8), habedit(8), habrep(8), habconf(5), myhabitat(1), habget(1),
habput(1), habrs(1), habmeth(1)

System Garden

Habitat User Manual 42

mailto:nigel.stuckey@systemgarden.com
mailto:nigel.stuckey@systemgarden.com

habconf
Habitat configuration

DESCRIPTION
Every major habitat utility and program gathers its configuration from external sources in the
same way. The formats are shown below, but this section details how the data is gathered.

Firstly, each program can have individual directives specified on the command line with multiple
'-C' flags.

A whole file of replacement directives can be used by using the '-c' flag. As this can be a route ad-
dress, the data can originate from a web server. This feature allows one to keep the application and
user defaults for mainstream use, and also allows special instances to be used simultaneously.

The user file ~/.habrc is read next (although the location can be overridden), generally used for
specific customisations. For example, the data files held in user interface history.

Then the application config is read from $HAB/etc/habitat.conf or /etc/habitat.conf (either
of which again can be overridden). This contains the default supplied by the developers and may be
amended by the local administrators.

Further configuration sources are possible, to allow for administrators to configure on a regional or
global basis. Thus, the application configuration file does not have to be altered or making regional
varients built. These sources may be web servers or other directory locations.

PARAMETERS
To customise at a user level, the file ~/.habrc should contain directives in the following format.

[-]directive [[=] value]

Directive may appear on its own, or have a value associated with it. Values may be arrays, by sepa-
rating their elements with whitespace. Each directive must appear on a new line. Comments may
appear on any line, including ones with directives. They start with the '#' character and end with
the newline character. The file must start with the magic string 'habitat 1', which confirms the con-
tents and intent of the file to the configuration system.

Common directives include:-

elog.above <sev> <route>
elog.below <sev> <route>
elog.set <sev> <route>
elog.all <route>

send errors and other messages above (or below) level <sev>
to the route <route>. The .set form configures just that sever-
ity level and the .all form sends messages from all severities to
<route>. <sev> can be 'fatal', 'error', 'warning', 'info', 'diag'
and 'debug'.

elog.format <sev> <format>
elog.allformat <format>

The specified severity level <sev> should print using <for-
mat>. The .allformat form sets <format> to all message seveli-
ties. See the full manuals for more details of the format.

hab.cfetc <route>
hab.cfuser <route>

Locations of the user configuration file (~/.habrc) in route
format and the application wide file ($HAB/etc/habitat.conf).
Because they are read early in the process of starting an appli-
cation, these have to be specifed on the command line using -c
or -C flags.

System Garden

Habitat User Manual 43

nmalloc Turn on the memory checking, which will identify memory
leaks. Normally this is off on stable releases, but developer re-
leases may have it activated within the code.

replicate.out <links>
replicate.in <links>

Specifies a list of replication links, used by the replication job.
The purpose is to associate a local storage ring with a remote
one on a repository. See the replication method's manual for
information on its format.

FILES
~/.habrc
$HAB/etc/habitat.conf or /etc/habitat.conf

SEE ALSO
clockwork(8), killclock(8), statclock(8), habedit(8), habrep(8), myhabitat(1), habget(1), habput(1),
habrs(1), habprobe(1), habmeth(1)

System Garden

Habitat User Manual 44

habrep
Replicate data between Habitat and System Garden's repository

SYNTAX
habrep

DESCRIPTION
Replicates data from the running public instance of clockwork on the local machine with System
Garden's repository.

This shell script is equivalent to a replication command in Clockwork's job table, but rather than
waiting for its scheduled time, replication will start at once. The job line (starting with method) is

 replicate replicate.in replicate.out "grs:%v/%h.grs,rstate,0"

The replicate method is run with the inbound replication contained in the 'replicate.in' configura-
tion value, outbound replication driven from the 'replicate.out' configuration value. State is re-
coded in the GRS driven ringstore $HAB/var/<hostname>.grs,rstate,0.

As data is protected by sequences, habrep can be run any number of times without duplicates and
corruption. Thus, the scheduled replication in the job table will be unaffected and its time does not
need to change.

Replication is the process of sending new data from local rings to a repository and the same for re-
mote to local. The state is recorded in a table in the central instance's ringstore.

FILES
 $HAB/var/<hostname>.grs

EXAMPLES
Typing the following:-

 habrep

will result in the following if successful

 Replicating to repository now...

or the folowing on a failure

 habrep: replication failed

AUTHORS
Nigel Stuckey <nigel.stuckey@systemgarden.com>

SEE ALSO
clockwork(8), killclock(8), statclock(8), habedit(8), habconf(5), myhabitat(1), habget(1), habput(1),
habrs(1), habprobe(1), habmeth(1)

System Garden

Habitat User Manual 45

mailto:nigel.stuckey@systemgarden.com
mailto:nigel.stuckey@systemgarden.com

habedit
Edit data stored in a Habitat route or ringstore

SYNTAX
habedit <route>
habedit <file> <ring> <duration>

DESCRIPTION
Read data from a ringstore (using the three argument addressing) or other location (using habitat's
route addressing) and amend it using your favorite editor.

If the object does not exist, you will be asked whether you wish to create it before the editing starts.
Answering no will exit the command.

An attempt is made to recognise free text format data within the specified object. If found, then the
time and sequence columns are suppressed along with the header so that the text alone is edited
and saved.

If the data is tabular, then a tab separated format will be sent to the editor, with a header of column
names. The sequence will be overridden with the next ordinal number when writing back to the
object.

If the editor returns a failure (non 0 return code), then the resulting edit is not stored back to the
route and the utility is abandoned.

See clockwork(1) for an explination of the route syntax

ENVIRONMENT
VISUAL If set with a path to a valid binary, this will be used as an editor of the data.

EDITOR If VISUAL is not set, this environment variable will be used instead.

EXAMPLES
To edit the job table from an established datastore file used for public data collection. This uses the
ringstore driver.

 habedit rs:var/myhost.grs,clockwork,0

Alternatively, if the three argument form is used, the ringstore driver will be assumed and the rs:
part is not needed.

 habedit var/myhost.grs clockwork 0

AUTHORS
Nigel Stuckey <nigel.stuckey@systemgarden.com>

SEE ALSO
clockwork(8), killclock(8), statclock(8), habrep(8), habconf(5), myhabitat(1), habget(1), habput(1),
habrs(1), habprobe(1), habmeth(1)

System Garden

Habitat User Manual 46

mailto:nigel.stuckey@systemgarden.com
mailto:nigel.stuckey@systemgarden.com

